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Abstract

This report considers a multi-modal deployment planning problem in
which movement requirements are allowed to originate from (supply)
centers, ground transported to (sea or air) ports of embarkation, and, upon
arrival at (sea or air) ports of debarkation, ground transported again to
(demand) centers or destinations. This sequence of movements involves
all three modes of transportation: air, land, and sea. We formulate this
deployment problem as an integer program which has a columnar
structure and allows for many different objectives. The complexity of this
program along with optimality properties for its solutions are discussed. A
heuristic solution procedure is also proposed.
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Executive Summary

This report describes the progress of the research on the time-
sensitive deployment planning problem which is ongoing at the Naval
Postgraduate School. As suggested at the meeting at Oak Ridge National
Laboratory in November 1988, our originally proposed problem has been
modified to include the functions of all three commands: Military Airlift
Command (MAC), Military Sealift Command (MSC), and Military Traffic
Management Command (MTMC). Also, the movement requirements are no
longer assumed to be aggregated into full shiploads. Moreover, to include
the function of MTMC, movement requirements are allowed to originate
and destine for (supply/demand) centers other than ports of embarkation
and debarkation. If desired, users are allowed to assign ports of
embarkation and debarkation to any movement requirements. However, if
users assign ports to all movement requirements, then the resulting
problem becomes either a pure airlift or sealift deployment planning
problem.

Under the above conditions, the problem of scheduling lift assets and
ground transportation to deliver movement requirements from origins to
destinations is formulated as as integer program. This formulation is
similar in structure to our originally proposed formulation, in that both
~have the columnar structure. In our original formulation, a column
represents a feasible pick-up and delivery schedule for a sealift asset and,
because of our original assumptions, each element in a column is either
zero or one to indicate whether a movement requirement is on.the asset's
schedule. In the current formulation, the column elements are no longer
binary; they can be any nonnegative integers which indicate the quantities
of cargoes to be transported by an asset at different time and locations.
With this generalized definition of a column, the resulting integer program
is quite flexible, for it allows the incorporation of rules regarding, e.g., asset
schedules and port restrictions, and permits the consideration of different
objective functions.

Although the integer programming formulation seems to capture
most of the realistic aspect of the deployment planning problem, the
resulting problem is difficult to solve optimally. One difficulty lies in the
fact that the generation of columns is an NP-complete problem and can
take exponentially long to solve. However, we are able to establish
properties concerning an optimal solution. Under some appropriate
conditions, one can infer from these two properties the following rule: to
minimize the lateness or closure date, one must schedule assets to visit a




minimum number of ports. Then, a heuristic procedure based on this rule
is proposed for the sealift part of the deployment problem. To address the
full problem, the procedure can be combined with the Lift Optimizer
program of Rosenthal [1988].

The current plan for our research is to consider alternate models to
the deployment planning problem. Our objective is to model the problem
in a manner that does not require the explicit representation of the
schedules for lift assets. Thus far, we have been following the standard
methodology of trying to construct feasible schedules to answer the
question of whether there exists a feasible deployment plan. It seems
logical that the detail of schedules should be left to the three
transportation commands and USTRANSCOM should only concern itself
with the feasibility question. The advantage of this approach is the
reduction in the computation effort, thereby making it more suitable for
crisis deployment planning.




1. Introduction

The United States Transportation Command (USTRANSCOM) is
responsible for coordinating the transportation planning effort among the
three service-specific transportation commands or Transportation
Operating Agencies (TOAs). The three TOAs are the Army's Military Traffic
Management Command (MTMC), the Navy's Military Sealift Command
(MSC), and the Air force's Military Airlift Command (MAC). MTMC is
responsible for the surface transportation of material inside the
continental United States and the operation of certain common user port
facilities worldwide, MSC is responsible for the ocean shipping, and MAC is
responsible for the overseas air transportation. Although the primary
purpose for USTRANSCOM is to integrate global air, land, and sea
transportation effort for the deployment of personnel and materiel
worldwide prior to and subsequent to a war, USTRANSCOM also monitors
the peacetime operation of the transportation assets controlled by the
three TOAs. Because of these two roles, USTRANSCOM planning can be
classified into two categories: deliberate and crisis planning.

In the deliberate planning process, the development of a deployment
plan takes place over a period of weeks or months. The plan itself
normally goes through several iterations of refinement to insure that it is
both effective and efficient. The end result is a set of feasible schedules
for assets in detail. In a crisis situation, the above approach to planning is
too lengthy. Major tactical decisions must be made in a period of a few
hours. These tactical decisions invariably rest upon knowing whether a
particular plan can be supported logistically. Thus, the real concern during
a crisis planning process is the existence of a feasible deployment plan, and
the detail of the plan can be constructed later, preferably by the respective
commands.

2. Problem Formulation

Lawphongpanich and Rosenthal [1988] described a column
generation approach to a time-sensitive deployment planning. problem
which considers only the sealift assets and assumes that the MRs have
been aggregated into full shiploads. The model below generalizes this
approach to include all three modes of transportation (land, sea, and air)
and relaxes the assumption about the aggregation. As presented, the
resulting problem is an integer programming (IP) problem rather than the
mixed set partition and covering problem obtained by Lawphongpanich
and Rosenthal. However, the IP problem still maintains the columnar
structure. The main difference is in the information which goes into each




column. In Lawphongpanich and Rosenthal, each column represents a
schedule for an asset, each has exactly m elements where m is the number
of MRs to be deployed, and each element is either zero or one indicating
~whether a given MR is picked up (and delivered) by the asset. In the
present formulation, a column contains information about the locations,
time, and quantity of each MR to be picked by an asset. Therefore, the
column elements can now be any nonnegative integer rather than a binary
number. As before, a column describes an asset schedule for the entire
length of the planning period and it is now referred to as a 'travel pattern.'
Given a set of feasible travel patterns for each asset, the IP problem selects
at most one pattern for each asset so as to optimize a given objective
function.

To describe the deployment planning problem, we categorize the
data into five major groups:

1) Movement Requirements (MR).
2) Lift Assets

3) Ports of embarkation/debarkation
4) Origins/destinations.

5) Ground Transportation

Within the above groups of data, the following information is assumed to
be available.

Movement Requirements:
a) Origin of the MR.
b) Destination of the MR
¢) Required port of embarkation (if any)
d) Required port of debarkation (if any)

e) Required mode of transportation (air or sea). It is assumed that
the travel between origins/destinations and ports of
embarkation/debarkation is always over land and the method of
transportation is either by rail or truck.

f) Available date at the origin




g) Required delivery date at destination.
h) Quantity, e.g., in short tons.
i) Type of cargo
j) Required handling equipments
Lift Assets:
a) Initial Location
b) Travel Speed
c) Type (plane type or ship type)
d) Capacity
e) Available date

f) Cargo compatibility (For some assets, this information may be
redundant with (c), in that the asset may only be compatible with
only one type of cargo. Thus, the asset type implicitly indicates
the type of cargo which it can accommodate, e.g., an oil tanker.)

g) Port compatibility.

a) Type (sea or air)
b) Location
c) Processing Capacity, e.g., short ton per day
d) Available handling equipments
e) Ship compatibility
Origins/Destination:

a) Location

b) Processing Capacity




Ground Transportation:

a) A network describe possible ground transportation link between
origins & POEs, POEs & POEs, PODs & PODs, and PODs &
destinations.

b) The speeds of various type of ground transportation. For
simplicity, it is assumed herein that there are only two types of
ground transportation, truck and rail. From these speeds, the
travel time for each transportation link can be calculated.

Figure 1 summarizes the underlying transportation network of a
deployment planning problem. Note that there are two types of arcs
(arrows) connecting node Ol to node Al which represent an origin and an
airport, respectively. These two arcs indicates the possibility of sending
flow from origin O1 to airport Al by truck or by rail. Also, there are two
bi-directional arcs connecting airport Al to airport A2. One represents the
ground link between the two airports and the other represents the air link.
There are no arc connecting airports to seaports and vice versa because
only two combinations, ground/air and ground/sea, are permitted in the
problem. All other arcs have similar meaning to the ones just described.

Note that the capacities for arcs are not depicted in Figure 1. The
capacities of arcs representing air or sea transportation are implicitly
determined by the number of assets available for the deployment.
However, it is assumed that the processing capacities at origins and
destinations sufficiently limit the flow of cargoes onto the arcs
representing ground transportation so that their capacities becomes
inessential to the problem.

To formulate the deployment problem as an IP problem, we define
the following:

Definition: A travel pattern for a given lift asset is a travel plan which is
feasible to the asset and also specifies the dates and ports at which
the MRs to be picked and delivered. By feasible, we mean that

(i) the specified combination of ports, MRs, and the given asset are
compatible, '

(ii) the asset has enough speed to travel to the designated ports by
the specified dates,




(iii) the specified MRs depart from their origins after their available
date and arrive at the designated POE on the specified date (here,
we assume that the required delivery date (RDD) can be violated
at a penalty), and

(iv) the asset can complete the travel pattern within the length of the
planning period, denoted henceforth as Tmax.

Integer Programming Formulation:

Below, we present several formulations of the deployment problem.
In these formulations, the following indices are utilized.

i = lift asset

j = travel pattern

m = movement requirement
p = port of embarkation

q = port of debarkation

0 = origin

d = destination

t = time (in days). The index t ranges from 1 to Tmax( the maximum
allowable closure date).

Given a set of travel patterns for the lift assets, the following factors can be
calculated for each travel pattern j of asset i:

AIIIJ1 = amount of the mth MR to be delivered by the ith asset using

the jth travel pattern.

ij
By

total amount of cargoes to be loaded at the pth POE onto the ith

asset using the jth travel pattern on day t.

Ctlljt = total amount of cargoes to be unloaded at the qth POD from the

ith asset using the jth travel pattern on day t.




D’ total amount of cargoes requested from the oth origin by the

ot

ith asset using the jth travel pattern on day t.

Eé"t = total amount of cargoes delivered to the dth destination by the

ith agsset using the jth travel pattern on day t

G’ = the day on which the last MR is delivered to its destination

using the ith asset and the jth pattern.

1 . .
LY = amount of late cargoes measured in, e.g., ton-day, due to the ith

asset using the jth pattern.

N" = number of late MRs due to the ith asset using the jth pattern.

To illustrate how the above set of factors are calculated, consider the
following situation in which there are 4 MRs, each weighs 5,000 tons and
numbered from 1 to 4. MR 1 and 2 originate at origin Ol and destine for
destination D1, and MR 3 and 4 originate at origin O2 and destine for
~destination D2. POE S1 and POD S3 are assigned to MR 1 and 2, and POE S2
and POD S4 are assigned to MR 3 and 4. Assume that a travel pattern of a
(sea) lift asset A is being considered. Figure 2 provides the travel time for
the essential arcs in the underlying network. These times are calculated
from the speed of asset A, the speed of the ground transport (truck), and
the geographical distances between various nodes. Assume that the
available date and the required delivery date for all MRs are day 1 and
day 50, respectively. Then, the following is a feasible travel pattern
(schedule) for asset A:

1) Pick up MR 1 at POE S1 on day 3 (which implies that MR 1 departs from
origin O1 on day 1).

2) Pick up MR 3 at POE S2 on day 6 (which implies that MR 3 departs from
origin O2 on day 2).

3) Unload MR 3 at POD S4 on day 20 (which implies that MR 3 arrives at
destination D2 on day 24).

4) Unload MR 1 at POD S3 on day 23 (which implies that MR 1 arrives at
destination D1 on day 24).




5) Pick up MR 2 at POE S1 on day 38 (which implies that MR 2 departs
from origin O1 on day 36).

6) Pick up MR 4 at POE S2 on day 41 (which implies that MR 4 departs
from origin O2 on day 37).

7) Unload MR 4 at POD S4 on day 55 (which implies that MR 4 arrives at
destination D2 on day 59).

8) Unload MR 2 at POD S3 on day 58 (which implies that MR 2 arrives at
destination D1 on day 59).

We then obtained the following factors from the above travel pattern:

A;' = 5,000 Al = 5,000
Az’ = 5,000 | Aj' = 5,000
11

A, =0, for m > 4 ( there are more that 4 MRs in the problem)

11 11

BSl,3 = 5000 BSl,38 = 5000
11 11

BSZ,6 = 5000 BSZ,41 = 5000
1

Bp,t = 0, for other POE p and day t.
11 11

CS3,23 = 5000 G55 55 = 5000
11 11

Cs4,20 = 5000 Gsa,55 = 5000
11

Cq,t = 0, for other POD q and day t

11 1
Dpy,1 = 5000 Doy 36 = 5000

11 11
Dgg 2 = 5000 Dpg,37 = 5000




11

D, = 0, for other origin o and day t
11 11

Ep3,24 = 5000 Ep3,59 = 5000
11 11

EBoa,24 = 5000 Eo4,s9 = 5000

11 o e
Ey, =0, for other destination d and day t

G =59

L' = 180,000 ton-day

(5000 tons of MR 2 late for 9 days + 5000 tons of MR 4 late
for 9 days)

N =2
Other given data are listed below.

om = quantity of the mth MR.

Bp = capacity of the pth POE.

i

¢q = capacity of the gth POD.
8o = capacity of the oth origin.

E4 = capacity of the dth destination.

Let xjj denote the (binary) decision variable where the value 1 indicates
that the jth travel pattern is assigned to the ith asset and O indicates
otherwise. Below, several formulations of the deployment problem are
presented. It should be noted that in each formulation only a subset of the
factors introduced above are utilized.




Model 1: Minimize Lateness

min 2; Zj Lijx;;

s.t
i T Allxii> an V m (1)
% %5 Bl < By v pit 2)
> % Dixy<so ¥ ot (4)
Ei Zj Eclljtxij <&q Vv d,t (5)
Ej Xjj £1 Vi (6)
Xij =0orl \4 i,j (7)

Constraint 1 ensures that all MRs are delivered, constraints 2-5
guarantee that the capacities at each origin, destination, POE, and POD are
not violated, and constraint 6 and 7 allow at most one travel pattern to be
selected for each asset.

Model 2: Minimize closure time
min z

s.t.

Zi EJ Gijxij £z | vV ij (8)

"~ and constraints 1-7




Constraint 8 simply assigns the longest completion time of the
selected travel patterns to z, thereby making z denotes the length of the
deployment plan, and the objective in Model 2 is to reduce z as much as
possible.

~Model 3: Minimize amount of short fall

For this model, we define a new decision variable, um, to represent
the amount of shortfall for the mth MR, and a new set W(i) to represent
the set of travel patterns for the ith asset without any late MR, i.e.,

W@) = { j: Nl =0}
Then, the problem becomes

min Em Um

S.t
2 EjaW(i) Arigxij + Uy = Oy ¥V m (9)
;i Tiew() Brxij < By Y pit (10)
2 ZjeW(i) C(iljtxij < Qq Vv q,t (11)
i Zjewd) Dilxi; < 86 Voot (12)
% Tiewa) Eilxi; < &4 v dt (13)

and constraints 6 & 7




Model 4: Minimize the number of assets to be used for the deployment
with the restriction that no late MR is allowed.

min Zi Ej Xij
s.t.

Zi ZjeW(i) A;Jlxij 2 Oy vV m (14)

and constraints 6, 7, and 10 to 13.

The above four models are only a sample of possible formulations of
the deployment problem. In fact, if the cost for using each travel pattern
can be calculated, one can also formulate an IP problem to minimize cost.
However, it is clear from this sample that travel patterns allow for a
variety of formulations. Another advantage of the travel pattern is the
fact that in none of the model is there any specification of the way in
which the travel pattern is to be generated. Thus, users have the
flexibility to incorporate any operating restrictions imposed by rules and
relationship specific to individual assets, ports, cargoes, or interaction of
combinations of these (see, e.g, Brown, Grave, and Ronen [1987]). However,
it goes without saying that the more flexibility one allows the more
difficult it is to generate a travel pattern. In the next section, we discuss
the complexity of this type of formulation.

3 Complexity of the Formulations with Travel Patterns

Consider the deployment problem in which all assets are of one type,
e.g., breakbulk, and they all have the same capacity. Moreover, assume
that the MRs have been aggregated so that each MR takes up the entire
capacity of the asset, and that each MR has been assigned to specific POE
and POD. This last assumption eliminates the need to consider the ground
transportation in the optimization, if the processing capacities at origins
and destinations are sufficiently large. Under the assumptions stated thus
far, Buvik [1988] and Newton [1988] showed in their Masters theses that
Model 2 (Minimize Closure Time) and Model 3 (Minimize Shortfall) reduce
to the mixed set covering and partitioning problems. Both these problems
are NP-complete. To obtain a 'good’ solution, Buvik and Newton solved the
LP relaxation problem instead. (Due to the degeneracy, the LP relaxation
also presents difficulties. For further discussion, see Brown et al. [1987].)
Besides the LP relaxation, there are a number of heuristics algorithms for




solving the set covering and partitioning problem and the reader is
referred to the Ph.D. thesis by Hey [1981] for a complete discussion.

Another aspect of the formulations with travel patterns is the travel
patterns themselves. In all four models, it is implicit that the travel
patterns are readily available. This may be true when the number of MRs
is small. In practice, the generation of travel patterns is burdensome, if
not impossible. There are two approaches to generating the patterns: one
is to generate a subset of patterns prior to the solution process and the
other is to generate them during the solution process using the column
generation framework (i.e., the Dantzig-Wolfe Decomposition). The first
approach requires an enumeration of a subset of possible combinations of
MRs and ports. (Due to the extreme large number of possible
combinations, it is usually impossible to enumerate all possible
combinations.) In the column generation framework, the most beneficial
pattern is generated when necessary. The benefit of a pattern to the
deployment plan is measured by the value of the reduced cost associated
with the pattern. The reduced cost is calculated from the dual variables of
the most current linear programming relaxation. So, generating the most
beneficial pattern is equivalent to selecting the most negative reduced cost
to enter the basis in the standard simplex method. However, generating
the most beneficial pattern requires solving an optimization problem. For
Model 2 with the assumptions stated at the beginning of this section,
"Lawphongpanich and Rosenthal [1988] showed that this optimization
problem is a shortest path problem with time windows which can be
solved effectively by a modified Dijkstra algorithm developed by
Desrochers et al. [1988]. Without the assumptions concerning the
aggregation MRs and the capacities of the ports, the problem of generating
the most beneficial pattern becomes a short path problem with several
side constraints which is again NP-complete. Several researchers (Aneja et
al. [1987], Beasley and Christofides [1986], Handler and Zang [1980], Joksch
[1966], Minoux [1975], and Ribiero [1983] ) have used dynamic
programming and Lagrangian Relaxation technique to solve small to
medium size problems.




4. Properties of an Optimal Solution:

In this section, we examine the necessary properties of optimal
travel patterns. Assume for the discussion that

1) All POEs are all on one side of the ocean and all PODs are on
the other side.

2) The distance measure satisfies the triangle inequality.
3) The loading time for an MR is same at all POEs.

Assumption 1 implies that a typical travel pattern requires that the
asset makes several transoceanic trips. Prior to each transoceanic trip, an
asset must pick up a collection of MRs from a number of POEs, the supply
side of the ocean, and then crosses the ocean to unload the MRs at the
PODs, the demand side of the ocean (see Figure 3).

Property 1: Assume that for a given optimal travel pattern, the MRs
arrives to their designated POEs prior to the arrival of the asset, then, in
order to minimize the lateness or closure time, the sequence in which the
asset visits the POEs (to pick up the MRs) must yield the minimum
traveling time.

Proof: Assume that MR numbered 1 to k are to be picked up by the asset.
Let AR; , for i = 1,..., k, denote the arrival time of MR i to their designated
POE, and AR* denote the arrival time of the asset to its nearest POE. By
assumption, AR* > AR;. Note that the time the asset has to spend at each
POE includes the time to load the MRs and the time it has to wait for the
MRs to arrive from the origins. By the assumption, the waiting time is
zero. Thus, the total time that an asset has to spend on the supply side of
the ocean is the loading time of k MRs plus the time to travel to the
different POEs. By Assumption 3, the loading time is constant. So, by
minimizing the traveling time, the asset can begin its transoceanic trip to
the PODs earlier, thereby arriving at the PODs earlier and reducing the
closure time and lateness, if any.[] '

The problem of routing the asset through a set of POEs so as to
minimize the completion time is equivalent to the Traveling Salesman
Problem, an NP-complete problem. However, when the distance between
POEs have special structure, e.g., straightline and shoreline, then the
routing problem is simplified. Kim [1985] defines the straightline and
shoreline structures as follows.




Definition: Let t(i,j) denotes the distance between point i and point j. Given
a set of points 1, 2, ..., n, then this set of points is said to satisfy the straight
line structure if, for all 1 <i<k<j<n,

i) t(i,i) = 0,

if) t(L)) = 1G.0),

iii) t(i,j) = t(i,k),

iv) t(i,j) 2 tk,)),

v) t(i,j) = k) + k).

Definition: Let t(i,j) denotes the distance between point i and point j. Given
a set of points 1, 2, ..., n, then this set of points is said to satisfy the
shoreline structure if, for all 1 <i<k<j< n, the distance satisfies
conditions (i) to (iv) above and

v t(i,j) <t(d,k) + tk,j).

Figure 4 illustrates both the straightline and shoreline structures. Note
that both the straightline and shoreline structures are special case of the
Euclidean distance.

With respect to Property 1, if the distances between the POEs satisfy
either the shoreline or straightline structure, the routing problem is trivial,
i.e., the asset should go along the straightline or the shoreline. However, if
the MRs do not all arrive prior to the arrival of the asset, the problem
becomes more difficult. In the straightline case, Kim [1985] showed that
the problem can be solved optimally by a dynamic programming approach.
For the shoreline case, the problem is NP-complete and Kim proposed a
heuristic algorithm.

The above discussion assumes that the POEs to be visited has been
determined for a given travel pattern. When the routing and the
determination of POEs to be visited are be performed simultaneously, it
would be logical to minimize the number of POEs an asset has to visit. In
an ideal situation, this number is one.

Now, consider the problem on the demand side of the ocean, that is,
how to unload the MRs on board an asset. In particular, we assume that
(1) the asset in question is a sea transport, (2) there exists a ground link




between any pair of POD and destination, and (3) ground speed is faster
than sea speed. Then, we have the following property concerning how best
to unload the MRs on board a sealift asset.

Property 2: Given that assumptions 1, 2, 3, and the preceding three
assumptions hold. Then, it is optimal with respect to minimizing lateness
and closure time to unload all MRs at one POD, if it has sufficient capacity.

Proof: Assume that the MRs on board are numbered from 1 to k.

Moreover, assume that in an optimal solution the MRs are unloaded at two
PODs: A and B. Define

1) Io and Iz as the set of MRs unloaded at POD A and B,
2) Ta,B as the travel time by sea from POD A to B,
3) ta,p as the travel time by truck from POD A to B, and

4) taq¢ and tg,q¢) as the travel time by truck from POD A and
B, respectively, to destination d(i) of ith MR.

Then, for all i € Ig, the time that MR i arrives is its destination, d(i), is
given by

Departure time from A + transit time from A to B + delivery time
= Departure time from A + 7o B + tB,d(i)
> Departure time from A + tAB + tB,d(i)
> Departure time from A + €4 q¢)
> tA,dd)

where the strict inequality follows from the assumption that ground speed
is faster than sea speed, i.e., ToB > ta,B , the inequality follows from the
triangle inequality, and the last strict inequality follows from that fact that
the departure time must be positive. Note that ts gy is the time at which
MR i, for i € Ig, arrives at its destination if it was unloaded at POE A. Thus,
by unloading all MRs at POD A, each MR that was originally unloaded at
POD B arrives at their destination earlier. So, we can only improve the
solution by unloading only at POD A, and the property is proved.[]

To summarize, we conclude from Property 1 that when possible it is
logical to load an asset at one POE prior to an ocean crossing and from
Property 2 that when the PODs have sufficient capacity sealift asset should
be unloaded at only one POD. In the next section, we propose a heuristic
procedure based on these two observations.




5. A Heuristic Procedure

Below, we present a heuristic algorithm for the deployment problem
with the objective of minimizing the closure date or lateness. It is
assumed that all MRs are to be sealifted from POEs to PODs. If there are
MRs requiring airlift, they can be considered separately using the GAMS
based program called the Lift Optimizer by Rosenthal [1988]. For MRs
which can be transported by sea or air, the procedure below can be used to
determine whether they can be delivered in a reasonable amount of time
by sealift assets. If not, they must then be transported by air.

The motivation for this heuristic procedure is the observation made
in the previous section that, with respect to the objective of minimizing
closure time and lateness, a 'good’ travel pattern requires a minimum
number of port visits for the sealift assets. In trying to achieve the
minimum number of port visits, the procedure sequentially constructs a
portion of a travel pattern for one ship at a time as they become available.
An asset becomes available for the first time when they completed their
last mission prior to the deployment. Afterward, an asset becomes
available again and again as soon as it finishes unloading at PODs. For the
ship under consideration, the procedure constructs the portion of the
schedule which includes first the visit to the POEs, the ocean crossing, and
the visit to one POD. To minimize the number of visits to different POEs,
the procedure always selects the POEs which provides the maximum
amount of cargoes for the asset.

To formally state the procedure, we define AV(i) as the time that
asset i will become available, N as the number of assets available for the
deployment, and Tpax, as before, the maximum allowable closure date.

Step 0: (Initialization)
Set AV(i) to the time when asset i will be available for the
deployment.

Step_1:
If there is no more MRs to be delivered, stop. Otherwise, let

i* = arg. min.{AV(@) : i = 1,...,N}, i.e., asset i* is the first asset to become
available. Go to Step 2.

Step 2:
For asset i*, find a compatible POE at which a maximum amount of
MRs can be loaded onto asset i*. Schedule asset i* to visit this POE,
mark the corresponding as 'assigned' to asset i*, and update the




remaining capacity of the POE appropriately. If asset i* is still not
full, repeat this process with the remaining POEs and MRs.

Step _3:
Find a POD which is nearest to last POE and has sufficient capacity to

unload cargoes on board asset i*. If none exists, go to the PODs in
order of decreasing remaining capacity until all cargoes are unloaded
from asset i*.

Step 4:
Compute

i) T*, the total time for asset i* to complete the loading of MRs,
crossing the ocean, and unloading at the PODs, and

ii) Tyast, the time the last MR assigned to asset i* arrives at its
destination.

If Tiast is greater than Tpax, stop and it is not possible to close the
deployment by Tpax. Otherwise, set AV(i*) = AV(i*) + T* and go to
Step 1. .

There are different approaches in determining the maximum amount
of cargoes which can be loaded on an asset at different POEs. We
formally state one approach to illustrate the idea and the necessary
calculation. First, define

1) Wy as the weight of MR m,
2) Ry as the ready date for MR m, and

3) to(m),p as the travel time (by truck or rail) from origin o(m) of mth
MR to the ptht POE.

Then, for asset i* determined in Step 1,

1) For each pair, (m,p), of MR and POE, let

AR(m,p,i*) = Ry + tom),p, if the combination of MR m, POE p,
and asset i* is compatible
= 0, otherwise.




2) For each POE p, let

M{p,o,p)={m: S‘AR(m,p,i*) < B and MR m has not been
assigned or delivered}

where o and § are usually taken to be AV(i*) and the time that
asset i* can arrive at POE p, respectively. So, M(p,a,B) is the
collection of MRs which can arrive at port p between day o and

day B.
3) For each POE p, let

Load(p,i*) = £, wm, where the index m ranges over the set
M(p,a.,B).

Thus, Load(p,i*) is the total amount of cargoes which can be
loaded on to asset i* at POE p.

4) Let CAP(p,B) be the remaining capacity of POE p on day f.

Then, the maximum amount of cargoes that can be loaded on
to asset i* at POE P is

L(p,i*) = max{ CAP(p,B), Load(p,i*) }.

In Step 2, we would then choose the POE with maximum value of L(p,i*) as
the one to visit.

6. Summary and Future Plan

We show that the deployment planning problem which includes all
three TOAs can be formulated as an integer programming problem and
that this problem is difficult to solve optimally. By examining the
properties of an optimal solution to the integer programming problem, we
are able to establish a heuristic rule for scheduling sea assets. Based on
this rule, we propose a heuristic procedure to address a deployment
problem.

The proposed heuristic procedure follows the general approach
existed in the literature. This approach answers the feasibility question by
actually constructing schedules to transport the MRs to their destination.
If a feasible set of schedules can be constructed, then the tactical plan in
question can be supported logistically. Otherwise, it cannot be supported.




However, a different approach is to bypass the construction of the
schedules and focus on determining whether it is possible to deliver all
MRs to their destinations. We believe that this approach has merit and
plan to pursue it further.
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